6 Week 5- The R environment
This lesson is modified from materials of the STEMinist_R lessons produced by several UC Davis graduate student and which can be found here. The lessons were shortened here to fit into two sessions 75 minute sessions.
These materials are evenly divided between live coding examples performed by the instructor and exercises performed by the students.
This class will take place with students typing directly into an R script for the exercises all of which can be found in the Week 5 semester file here
You can download the R files for this week via wget in the terminal with the following link:
wget https://raw.githubusercontent.com/BayLab/MarineGenomicsData/main/week5_semester.tar.gz
this is a commpressed file which can be uncompressed via:
tar -xzvf week5_semester.tar.gz
You can now open R and load in the R_Day_1_Lesson.R file. This is the script that we will work out of for the rest of the week. You can see it contains many commented sections that begin with a #
. This allows you to add comments to your code, explaining what you are doing for each line of code. Commenting code is very important! It explains to someone else what your code does, and can even be useful when you revisit your own code after a few weeks/months/years. Be nice to your future self, comment your code.
The next section contains the commented out code and the script that is run in R in a format that is more easily readable on a website.
6.1 Lesson 1: Orientation to R
R can be used for basic arithmetic:
5+10+23
#> [1] 38
It can also store values in variables:
You can assign an object using an assignment operator <-
or =
.
<-10
number<-c(10, 11, 12, 14, 16) numbers
You can see your assigned object by typing the name you gave it.
number
#> [1] 10
numbers
#> [1] 10 11 12 14 16
Objects can be numbers or characters:
<-"meow"
cat<-"woof" dog
We can use colons to get sequences of numbers:
<-1:100 n
Vectors can also include characters (in quotes):
c()
=concatenate, aka link things together!
<-c("woof", "meow", "hiss", "baa") animals
6.2 Manipulating a vector object
We can get summaries of vectors with summary()
summary(n)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.00 25.75 50.50 50.50 75.25 100.00
We can see how long a vector is with length()
length(n)
#> [1] 100
You can use square brackets []
to get parts of vectors.
50] n[
#> [1] 50
6.3 Operations act on each element of a vector:
# +2
+2 numbers
#> [1] 12 13 14 16 18
# *2
*2 numbers
#> [1] 20 22 24 28 32
# mean
mean(numbers)
#> [1] 12.6
# ^2
^2 numbers
#> [1] 100 121 144 196 256
# sum
sum(numbers)
#> [1] 63
6.4 Operations can also work with two vectors:
#define a new object y
<-numbers*2
y# n + y
+ y numbers
#> [1] 30 33 36 42 48
# n * y
* y numbers
#> [1] 200 242 288 392 512
6.5 A few tips below for working with objects:
We can keep track of what objects R is using, with the functions ls()
and objects()
ls()
#> [1] "a" "adj.p.val1" "adj.p.val2" "adj.p.val3"
#> [5] "adj.p.val4" "adj.p.val5" "admix.props" "animals"
#> [9] "areaCircle" "babynames" "beag" "beag_allIND"
#> [13] "beag_allIND_final" "cali" "candidates" "candidates.1"
#> [17] "candidates.2" "candidates.3" "candidates.4" "candidates.5"
#> [21] "cat" "ChickWeight" "chlomean" "conStruct.data"
#> [25] "conStruct.results" "cov" "data" "data.block"
#> [29] "data_to_plot" "df1" "df2" "df3"
#> [33] "df4" "dog" "e" "environ"
#> [37] "fst" "g" "G" "gen"
#> [41] "gen_allIND" "geno" "genos" "geo_dist"
#> [45] "i" "il" "iris" "L"
#> [49] "lambda1" "lambda2" "lambda3" "lambda4"
#> [53] "lambda5" "listy" "livability" "lrt"
#> [57] "lrt_filt" "lrt_rando" "meta" "meta.path"
#> [61] "msleep" "my.colors" "my.new" "my.run"
#> [65] "my_colors" "my_list" "n" "names"
#> [69] "ne.pacific" "number" "numbers" "OF"
#> [73] "outliers" "P1" "ph" "pheno_chr6"
#> [77] "precip_seasonality" "precip_w.crop" "precip_wettest" "project"
#> [81] "q" "qval" "rando_filt" "salinity"
#> [85] "sea_cuc_geno" "sea_cuc_lfmm" "setosa1.petallength" "setosa1.petalwidth"
#> [89] "setosa1area2" "sites" "sites_environ" "sites_environ_matrix"
#> [93] "sites_environ_matrix_nas" "squares" "sst_max" "sst_max.crop"
#> [97] "sst_mean" "state.abb" "state.area" "state.center"
#> [101] "state.division" "state.name" "state.region" "state.x77"
#> [105] "states" "states_standardized" "subgen" "submeta"
#> [109] "subpops" "subsleep" "tG" "tr_msleep"
#> [113] "vcf.path" "w" "x" "y"
#> [117] "zs1" "zs2" "zs3" "zs4"
#> [121] "zs5"
objects() #returns the same results as ls() in this case. because we only have objects in our environment.
#> [1] "a" "adj.p.val1" "adj.p.val2" "adj.p.val3"
#> [5] "adj.p.val4" "adj.p.val5" "admix.props" "animals"
#> [9] "areaCircle" "babynames" "beag" "beag_allIND"
#> [13] "beag_allIND_final" "cali" "candidates" "candidates.1"
#> [17] "candidates.2" "candidates.3" "candidates.4" "candidates.5"
#> [21] "cat" "ChickWeight" "chlomean" "conStruct.data"
#> [25] "conStruct.results" "cov" "data" "data.block"
#> [29] "data_to_plot" "df1" "df2" "df3"
#> [33] "df4" "dog" "e" "environ"
#> [37] "fst" "g" "G" "gen"
#> [41] "gen_allIND" "geno" "genos" "geo_dist"
#> [45] "i" "il" "iris" "L"
#> [49] "lambda1" "lambda2" "lambda3" "lambda4"
#> [53] "lambda5" "listy" "livability" "lrt"
#> [57] "lrt_filt" "lrt_rando" "meta" "meta.path"
#> [61] "msleep" "my.colors" "my.new" "my.run"
#> [65] "my_colors" "my_list" "n" "names"
#> [69] "ne.pacific" "number" "numbers" "OF"
#> [73] "outliers" "P1" "ph" "pheno_chr6"
#> [77] "precip_seasonality" "precip_w.crop" "precip_wettest" "project"
#> [81] "q" "qval" "rando_filt" "salinity"
#> [85] "sea_cuc_geno" "sea_cuc_lfmm" "setosa1.petallength" "setosa1.petalwidth"
#> [89] "setosa1area2" "sites" "sites_environ" "sites_environ_matrix"
#> [93] "sites_environ_matrix_nas" "squares" "sst_max" "sst_max.crop"
#> [97] "sst_mean" "state.abb" "state.area" "state.center"
#> [101] "state.division" "state.name" "state.region" "state.x77"
#> [105] "states" "states_standardized" "subgen" "submeta"
#> [109] "subpops" "subsleep" "tG" "tr_msleep"
#> [113] "vcf.path" "w" "x" "y"
#> [117] "zs1" "zs2" "zs3" "zs4"
#> [121] "zs5"
# how to get help for a function; you can also write help()
?ls# you can get rid of objects you don't want
rm(numbers)
# and make sure it got rid of them
ls()
#> [1] "a" "adj.p.val1" "adj.p.val2" "adj.p.val3"
#> [5] "adj.p.val4" "adj.p.val5" "admix.props" "animals"
#> [9] "areaCircle" "babynames" "beag" "beag_allIND"
#> [13] "beag_allIND_final" "cali" "candidates" "candidates.1"
#> [17] "candidates.2" "candidates.3" "candidates.4" "candidates.5"
#> [21] "cat" "ChickWeight" "chlomean" "conStruct.data"
#> [25] "conStruct.results" "cov" "data" "data.block"
#> [29] "data_to_plot" "df1" "df2" "df3"
#> [33] "df4" "dog" "e" "environ"
#> [37] "fst" "g" "G" "gen"
#> [41] "gen_allIND" "geno" "genos" "geo_dist"
#> [45] "i" "il" "iris" "L"
#> [49] "lambda1" "lambda2" "lambda3" "lambda4"
#> [53] "lambda5" "listy" "livability" "lrt"
#> [57] "lrt_filt" "lrt_rando" "meta" "meta.path"
#> [61] "msleep" "my.colors" "my.new" "my.run"
#> [65] "my_colors" "my_list" "n" "names"
#> [69] "ne.pacific" "number" "OF" "outliers"
#> [73] "P1" "ph" "pheno_chr6" "precip_seasonality"
#> [77] "precip_w.crop" "precip_wettest" "project" "q"
#> [81] "qval" "rando_filt" "salinity" "sea_cuc_geno"
#> [85] "sea_cuc_lfmm" "setosa1.petallength" "setosa1.petalwidth" "setosa1area2"
#> [89] "sites" "sites_environ" "sites_environ_matrix" "sites_environ_matrix_nas"
#> [93] "squares" "sst_max" "sst_max.crop" "sst_mean"
#> [97] "state.abb" "state.area" "state.center" "state.division"
#> [101] "state.name" "state.region" "state.x77" "states"
#> [105] "states_standardized" "subgen" "submeta" "subpops"
#> [109] "subsleep" "tG" "tr_msleep" "vcf.path"
#> [113] "w" "x" "y" "zs1"
#> [117] "zs2" "zs3" "zs4" "zs5"
6.6 EXERCISE 1.1
- Open Rstudio and perform an arithmetic calculation in the command line.
Solution
#this can be whatever you decide to do!
5*134
#> [1] 670
- Create a numeric vector in the command line containing:
- the numbers 2, 9, 3, 8, and 3 and assign this vector to a global variable x.
- Perform arithmetic with x.
- Convince yourself R works as a calculator, and knows order of operations.
- Multiply x by 10, and save the result as a new object named y
- Calculate the difference in the sum of the x vector and the sum of the y vector
Solution
<- c(2, 9, 3, 8, 3)
x * 20 x
#> [1] 40 180 60 160 60
+ 4 * 24 x
#> [1] 98 105 99 104 99
<- x * 10
y sum(x) - sum(y)
#> [1] -225
- Call the help files for the functions ls() and rm()
- What are the arguments for the ls() function?
- What does the ‘sorted’ argument do?
Solution
?ls#From the help file: sorted is a logical indicating if the resulting character should be sorted alphabetically. Note that this is part of ls() may take most of the time.
6.7 1.2 Characterizing a dataframe
We’ll now move from working with objects and vectors to working with dataframes:
- Here are a few useful functions:
- install.packages()
- library()
- data()
- str()
- dim()
- colnames() and rownames()
- class()
- as.factor()
- as.numeric()
- unique()
- t()
- max(), min(), mean() and summary()
We’re going to use data on sleep patterns in mammals. This requires installing a package (ggplot2) and loading the data
Install the package ggplot2
. This only has to be done once and after installation we should then comment out the command to install the package with a #.
#install.packages("ggplot2")
#load the package
library (ggplot2)
#> Need help? Try Stackoverflow: https://stackoverflow.com/tags/ggplot2
#>
#> Attaching package: 'ggplot2'
#> The following object is masked _by_ '.GlobalEnv':
#>
#> msleep
Load the data (it’s called msleep).
data("msleep")
There are many functions in R that allow us to get an idea of what the data looks like. For example, what are it’s dimensions (how many rows and columns)?
# head() -look at the beginning of the data file
# tail() -look at the end of the data file
head(msleep)
#> # A tibble: 6 × 11
#> name genus vore order conservation sleep_total sleep…¹ sleep…² awake brainwt bodywt
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheetah Acinonyx carni Carnivora lc 12.1 NA NA 11.9 NA 50
#> 2 Owl monkey Aotus omni Primates <NA> 17 1.8 NA 7 0.0155 0.48
#> 3 Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.6 NA 1.35
#> 4 Greater short-tailed shrew Blarina omni Soricomorpha lc 14.9 2.3 0.133 9.1 0.00029 0.019
#> 5 Cow Bos herbi Artiodactyla domesticated 4 0.7 0.667 20 0.423 600
#> 6 Three-toed sloth Bradypus herbi Pilosa <NA> 14.4 2.2 0.767 9.6 NA 3.85
#> # … with abbreviated variable names ¹sleep_rem, ²sleep_cycle
tail(msleep)
#> # A tibble: 6 × 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Tenrec Tenrec omni Afrosoricida <NA> 15.6 2.3 NA 8.4 0.0026 0.9
#> 2 Tree shrew Tupaia omni Scandentia <NA> 8.9 2.6 0.233 15.1 0.0025 0.104
#> 3 Bottle-nosed dolphin Tursiops carni Cetacea <NA> 5.2 NA NA 18.8 NA 173.
#> 4 Genet Genetta carni Carnivora <NA> 6.3 1.3 NA 17.7 0.0175 2
#> 5 Arctic fox Vulpes carni Carnivora <NA> 12.5 NA NA 11.5 0.0445 3.38
#> 6 Red fox Vulpes carni Carnivora <NA> 9.8 2.4 0.35 14.2 0.0504 4.23
# str()
str(msleep)
#> tibble [83 × 11] (S3: tbl_df/tbl/data.frame)
#> $ name : chr [1:83] "Cheetah" "Owl monkey" "Mountain beaver" "Greater short-tailed shrew" ...
#> $ genus : chr [1:83] "Acinonyx" "Aotus" "Aplodontia" "Blarina" ...
#> $ vore : chr [1:83] "carni" "omni" "herbi" "omni" ...
#> $ order : chr [1:83] "Carnivora" "Primates" "Rodentia" "Soricomorpha" ...
#> $ conservation: chr [1:83] "lc" NA "nt" "lc" ...
#> $ sleep_total : num [1:83] 12.1 17 14.4 14.9 4 14.4 8.7 7 10.1 3 ...
#> $ sleep_rem : num [1:83] NA 1.8 2.4 2.3 0.7 2.2 1.4 NA 2.9 NA ...
#> $ sleep_cycle : num [1:83] NA NA NA 0.133 0.667 ...
#> $ awake : num [1:83] 11.9 7 9.6 9.1 20 9.6 15.3 17 13.9 21 ...
#> $ brainwt : num [1:83] NA 0.0155 NA 0.00029 0.423 NA NA NA 0.07 0.0982 ...
#> $ bodywt : num [1:83] 50 0.48 1.35 0.019 600 ...
dim(), ncol(), nrow()- dimensions, number of columns, number of rows colnames(), rownames() - column names, row names
Rstudio also allows us to just look into the data file with View()
6.8 How to access parts of the data:
We can also look at a single column at a time. There are three ways to access this: $, [,#] or [,“a”].
Quick Tip: Think about “rc cola” or “remote control car” to remember that [5,] means fifth row and [,5] means fifth column!
Each way has it’s own advantages:
3] msleep[,
#> # A tibble: 83 × 1
#> vore
#> <chr>
#> 1 carni
#> 2 omni
#> 3 herbi
#> 4 omni
#> 5 herbi
#> 6 herbi
#> 7 carni
#> 8 <NA>
#> 9 carni
#> 10 herbi
#> # … with 73 more rows
"vore"] msleep[,
#> # A tibble: 83 × 1
#> vore
#> <chr>
#> 1 carni
#> 2 omni
#> 3 herbi
#> 4 omni
#> 5 herbi
#> 6 herbi
#> 7 carni
#> 8 <NA>
#> 9 carni
#> 10 herbi
#> # … with 73 more rows
$vore msleep
#> [1] "carni" "omni" "herbi" "omni" "herbi" "herbi" "carni" NA "carni" "herbi" "herbi"
#> [12] "herbi" "omni" "herbi" "omni" "omni" "omni" "carni" "herbi" "omni" "herbi" "insecti"
#> [23] "herbi" "herbi" "omni" "omni" "herbi" "carni" "omni" "herbi" "carni" "carni" "herbi"
#> [34] "omni" "herbi" "herbi" "carni" "omni" "herbi" "herbi" "herbi" "herbi" "insecti" "herbi"
#> [45] "carni" "herbi" "carni" "herbi" "herbi" "omni" "carni" "carni" "carni" "omni" NA
#> [56] "omni" NA NA "carni" "carni" "herbi" "insecti" NA "herbi" "omni" "omni"
#> [67] "insecti" "herbi" NA "herbi" "herbi" "herbi" NA "omni" "insecti" "herbi" "herbi"
#> [78] "omni" "omni" "carni" "carni" "carni" "carni"
Sometimes it is useful to know what class() the column is:
class(msleep$vore)
#> [1] "character"
class(msleep$sleep_total)
#> [1] "numeric"
We can also look at a single row at a time. There are two ways to access this: 1. by indicating the row number in square brackets next to the name of the dataframe name[#,]
and by calling the actual name of the row (if your rows have names) name["a",]
.
43,] msleep[
#> # A tibble: 1 × 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Little brown bat Myotis insecti Chiroptera <NA> 19.9 2 0.2 4.1 0.00025 0.01
$name == "Mountain beaver",] msleep[msleep
#> # A tibble: 1 × 11
#> name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.6 NA 1.35
We can select more than one row or column at a time:
# see two columns
c(1, 6)] msleep[,
#> # A tibble: 83 × 2
#> name sleep_total
#> <chr> <dbl>
#> 1 Cheetah 12.1
#> 2 Owl monkey 17
#> 3 Mountain beaver 14.4
#> 4 Greater short-tailed shrew 14.9
#> 5 Cow 4
#> 6 Three-toed sloth 14.4
#> 7 Northern fur seal 8.7
#> 8 Vesper mouse 7
#> 9 Dog 10.1
#> 10 Roe deer 3
#> # … with 73 more rows
# and make a new data frame from these subsets
<-msleep[,c(1, 6)] subsleep
But what if we actually care about how many unique things are in a column?
# unique()
unique(msleep[, "order"])
#> # A tibble: 19 × 1
#> order
#> <chr>
#> 1 Carnivora
#> 2 Primates
#> 3 Rodentia
#> 4 Soricomorpha
#> 5 Artiodactyla
#> 6 Pilosa
#> 7 Cingulata
#> 8 Hyracoidea
#> 9 Didelphimorphia
#> 10 Proboscidea
#> 11 Chiroptera
#> 12 Perissodactyla
#> 13 Erinaceomorpha
#> 14 Cetacea
#> 15 Lagomorpha
#> 16 Diprotodontia
#> 17 Monotremata
#> 18 Afrosoricida
#> 19 Scandentia
# table()
table(msleep$order)
#>
#> Afrosoricida Artiodactyla Carnivora Cetacea Chiroptera Cingulata Didelphimorphia
#> 1 6 12 3 2 2 2
#> Diprotodontia Erinaceomorpha Hyracoidea Lagomorpha Monotremata Perissodactyla Pilosa
#> 2 2 3 1 1 3 1
#> Primates Proboscidea Rodentia Scandentia Soricomorpha
#> 12 2 22 1 5
# levels(), if class is factor (and if not we can make it a factor)
levels(as.factor(msleep$order))
#> [1] "Afrosoricida" "Artiodactyla" "Carnivora" "Cetacea" "Chiroptera" "Cingulata"
#> [7] "Didelphimorphia" "Diprotodontia" "Erinaceomorpha" "Hyracoidea" "Lagomorpha" "Monotremata"
#> [13] "Perissodactyla" "Pilosa" "Primates" "Proboscidea" "Rodentia" "Scandentia"
#> [19] "Soricomorpha"
6.9 Data Manipulation
If your data is transposed in a way that isn’t useful to you, you can switch it. Note that this often changes the class of each column!
In R, each column must have the same type of data:
# t()
<-t(msleep)
tr_msleepstr(tr_msleep)
#> chr [1:11, 1:83] "Cheetah" "Acinonyx" "carni" "Carnivora" "lc" "12.1" NA NA "11.90" NA " 50.000" "Owl monkey" ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : chr [1:11] "name" "genus" "vore" "order" ...
#> ..$ : NULL
It’s important to know the class of data if you want to manipulate it. For example, you can’t add characters.
msleep
contains several different types of data.
Some common classes are: factors, numeric, integers, characters, logical
# class()
class(msleep)
#> [1] "tbl_df" "tbl" "data.frame"
# str()
str(msleep)
#> tibble [83 × 11] (S3: tbl_df/tbl/data.frame)
#> $ name : chr [1:83] "Cheetah" "Owl monkey" "Mountain beaver" "Greater short-tailed shrew" ...
#> $ genus : chr [1:83] "Acinonyx" "Aotus" "Aplodontia" "Blarina" ...
#> $ vore : chr [1:83] "carni" "omni" "herbi" "omni" ...
#> $ order : chr [1:83] "Carnivora" "Primates" "Rodentia" "Soricomorpha" ...
#> $ conservation: chr [1:83] "lc" NA "nt" "lc" ...
#> $ sleep_total : num [1:83] 12.1 17 14.4 14.9 4 14.4 8.7 7 10.1 3 ...
#> $ sleep_rem : num [1:83] NA 1.8 2.4 2.3 0.7 2.2 1.4 NA 2.9 NA ...
#> $ sleep_cycle : num [1:83] NA NA NA 0.133 0.667 ...
#> $ awake : num [1:83] 11.9 7 9.6 9.1 20 9.6 15.3 17 13.9 21 ...
#> $ brainwt : num [1:83] NA 0.0155 NA 0.00029 0.423 NA NA NA 0.07 0.0982 ...
#> $ bodywt : num [1:83] 50 0.48 1.35 0.019 600 ...
Often we want to summarize data. There are many ways of doing this in R:
# calculate mean() of a column
mean(msleep$sleep_total)
#> [1] 10.43373
# max()
max(msleep$sleep_total)
#> [1] 19.9
# min()
min(msleep$sleep_total)
#> [1] 1.9
# summary()
summary(msleep$sleep_total)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.90 7.85 10.10 10.43 13.75 19.90
Sometimes, the values we care about aren’t provided in a data set. When this happens, we can create a new column that contains the values we’re interested in:
# what if what we cared about was our sleep_total/sleep_rem ratio?
# add a sleep_total/sleep_rem ratio column to our msleep dataframe with $
$total_rem<-msleep$sleep_total/msleep$sleep_rem
msleep# look at our dataframe again. It now contains 12 columns, one of them being the one we just created.
head(msleep)
#> # A tibble: 6 × 12
#> name genus vore order conser…¹ sleep…² sleep…³ sleep…⁴ awake brainwt bodywt total…⁵
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Cheetah Acinonyx carni Carnivora lc 12.1 NA NA 11.9 NA 50 NA
#> 2 Owl monkey Aotus omni Primates <NA> 17 1.8 NA 7 0.0155 0.48 9.44
#> 3 Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.6 NA 1.35 6
#> 4 Greater short-tailed shrew Blarina omni Soricomorpha lc 14.9 2.3 0.133 9.1 0.00029 0.019 6.48
#> 5 Cow Bos herbi Artiodactyla domesti… 4 0.7 0.667 20 0.423 600 5.71
#> 6 Three-toed sloth Bradypus herbi Pilosa <NA> 14.4 2.2 0.767 9.6 NA 3.85 6.55
#> # … with abbreviated variable names ¹conservation, ²sleep_total, ³sleep_rem, ⁴sleep_cycle, ⁵total_rem
6.10 EXERCISE 1.2
Reminder of those useful commands: dataframename[row , col], str(), dim(), nrow(), unique(), length(), rownames(), summary(), min(), max(), mean(), range(), levels(), factor(), as.factor(), class(), ncol(), nrow(), table(), sum(), quantile(), var() We’ll use the built-in ‘iris’ dataset. the command:
data(iris)
# this loads the ‘iris’ dataset. You can view more information about this dataset withhelp(iris)
or?iris
- How many rows are in the dataset?
Solution
data(iris)
nrow(iris)
#> [1] 150
- What are three distinct ways to figure this out?
Solution
#nrows
#str
#dim
- How many species of flowers are in the dataset?
Solution
levels(iris$Species)
#> [1] "setosa" "versicolor" "virginica"
- What class is iris?
Solution
class(iris)
#> [1] "data.frame"
- How many columns does this data frame have? What are their names?
Solution
colnames(iris)
#> [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
- What class did R assign to each column?
Solution
str(iris)
#> 'data.frame': 150 obs. of 5 variables:
#> $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#> $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#> $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#> $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#> $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
- Assign the first flower’s petal’s width and length to new objects called setosa1.petalwidth and setosa1.petallength
Solution
<-iris[1,2]
setosa1.petalwidth<-iris[1,3] setosa1.petallength
- Calculate the approximate area of the petal of the first flower, setosa1 (assume petal area can be approximated by a rectangle).
Solution
#using our premade objects
<-setosa1.petalwidth*setosa1.petallength setosa1area2
- Calculate the petal area of each flower in the iris dataset and assign this to a new column named PetalArea.
Solution
$PetalArea<-iris$Petal.Length*iris$Petal.Width iris
- What is the maximum sepal length of the irises?
Solution
max(iris$Sepal.Length)
#> [1] 7.9
- What is the average sepal length among all flowers in the dataset?
Solution
mean(iris$Sepal.Length)
#> [1] 5.843333
- How about the minimum and median sepal length?
Solution
min(iris$Sepal.Length)
#> [1] 4.3
median(iris$Sepal.Length)
#> [1] 5.8
6.11 1.3 Subsetting datasets & logicals
A few useful commands: equals ==
, does not equal !=
, greater than >
, less than <
, and &
, and a pipe which can also indicate “and” |
.
Reminder there are two assignment operators in R <-
and a single equals sign =
. The one you use really depends on how you learned to use R, and are otherwise equivalent.
Logical conditions vs. assignment operators:
Logical values of TRUE and FALSE are special in R. What class is a logical value?
TRUE
#> [1] TRUE
FALSE
#> [1] FALSE
# what class is a logical value?
class(TRUE)
#> [1] "logical"
Logical values are stored as 0 for FALSE and 1 for TRUE. Which means you can do math with them!
TRUE + 1
#> [1] 2
FALSE + 1
#> [1] 1
sum(c(TRUE,TRUE,FALSE,FALSE))
#> [1] 2
!TRUE
#> [1] FALSE
!c(TRUE,TRUE,FALSE,FALSE)
#> [1] FALSE FALSE TRUE TRUE
Logicals will be the output of various tests:
1 == 1
#> [1] TRUE
1 == 2
#> [1] FALSE
# does not equal
1 != 1
#> [1] FALSE
1 != 2
#> [1] TRUE
# greater than
1 > 1
#> [1] FALSE
1 >= 1
#> [1] TRUE
# less than
1 < 3
#> [1] TRUE
# combining logical conditions with and (&), or(|)
1 == 1 & 2 == 2
#> [1] TRUE
1 == 1 & 1 == 2
#> [1] FALSE
1 == 1 | 1 == 2
#> [1] TRUE
# we can take the opposite of a logical by using !
!TRUE
#> [1] FALSE
This is very useful because we can use logicals to query a data frame or vector.
# Which numbers in 1:10 are greater than 3?
1:10 > 3
#> [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
# How many numbers in 1:10 are greater than 3?
sum(1:10 > 3)
#> [1] 7
# in our msleep data frame, which species have total sleep greater than 18 hours?
# reload the msleep data with library(ggplot2) and data(msleep) if you need to
"sleep_total"]>18 msleep[,
#> sleep_total
#> [1,] FALSE
#> [2,] FALSE
#> [3,] FALSE
#> [4,] FALSE
#> [5,] FALSE
#> [6,] FALSE
#> [7,] FALSE
#> [8,] FALSE
#> [9,] FALSE
#> [10,] FALSE
#> [11,] FALSE
#> [12,] FALSE
#> [13,] FALSE
#> [14,] FALSE
#> [15,] FALSE
#> [16,] FALSE
#> [17,] FALSE
#> [18,] FALSE
#> [19,] FALSE
#> [20,] FALSE
#> [21,] FALSE
#> [22,] TRUE
#> [23,] FALSE
#> [24,] FALSE
#> [25,] FALSE
#> [26,] FALSE
#> [27,] FALSE
#> [28,] FALSE
#> [29,] FALSE
#> [30,] FALSE
#> [31,] FALSE
#> [32,] FALSE
#> [33,] FALSE
#> [34,] FALSE
#> [35,] FALSE
#> [36,] FALSE
#> [37,] TRUE
#> [38,] FALSE
#> [39,] FALSE
#> [40,] FALSE
#> [41,] FALSE
#> [42,] FALSE
#> [43,] TRUE
#> [44,] FALSE
#> [45,] FALSE
#> [46,] FALSE
#> [47,] FALSE
#> [48,] FALSE
#> [49,] FALSE
#> [50,] FALSE
#> [51,] FALSE
#> [52,] FALSE
#> [53,] FALSE
#> [54,] FALSE
#> [55,] FALSE
#> [56,] FALSE
#> [57,] FALSE
#> [58,] FALSE
#> [59,] FALSE
#> [60,] FALSE
#> [61,] FALSE
#> [62,] TRUE
#> [63,] FALSE
#> [64,] FALSE
#> [65,] FALSE
#> [66,] FALSE
#> [67,] FALSE
#> [68,] FALSE
#> [69,] FALSE
#> [70,] FALSE
#> [71,] FALSE
#> [72,] FALSE
#> [73,] FALSE
#> [74,] FALSE
#> [75,] FALSE
#> [76,] FALSE
#> [77,] FALSE
#> [78,] FALSE
#> [79,] FALSE
#> [80,] FALSE
#> [81,] FALSE
#> [82,] FALSE
#> [83,] FALSE
# Using which() to identify which rows match the logical values (TRUE) and length to count how many species there are
which(msleep[,"sleep_total"]>18) #22 37 43 62 --> the rows that contain organisms that sleep more than 18 hrs
#> [1] 22 37 43 62
length(which(msleep[,"sleep_total"]>18)) #4 --> number of species that sleep more than 18 hrs
#> [1] 4
# which four species are these?
which(msleep[,"sleep_total"]>18),] msleep[
#> # A tibble: 4 × 12
#> name genus vore order conservat…¹ sleep…² sleep…³ sleep…⁴ awake brainwt bodywt total…⁵
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Big brown bat Eptesicus insecti Chiroptera lc 19.7 3.9 0.117 4.3 3 e-4 0.023 5.05
#> 2 Thick-tailed opposum Lutreolina carni Didelphimorphia lc 19.4 6.6 NA 4.6 NA 0.37 2.94
#> 3 Little brown bat Myotis insecti Chiroptera <NA> 19.9 2 0.2 4.1 2.5e-4 0.01 9.95
#> 4 Giant armadillo Priodontes insecti Cingulata en 18.1 6.1 NA 5.9 8.1e-2 60 2.97
#> # … with abbreviated variable names ¹conservation, ²sleep_total, ³sleep_rem, ⁴sleep_cycle, ⁵total_rem
# what if we only want to see the bats that sleep more than 18 hours per 24 hour period?
which(msleep[,"sleep_total"]>18 & msleep[,"order"] == "Chiroptera"),] msleep[
#> # A tibble: 2 × 12
#> name genus vore order conservation sleep_total sleep_rem sleep_cy…¹ awake brainwt bodywt total…²
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Big brown bat Eptesicus insecti Chiroptera lc 19.7 3.9 0.117 4.3 0.0003 0.023 5.05
#> 2 Little brown bat Myotis insecti Chiroptera <NA> 19.9 2 0.2 4.1 0.00025 0.01 9.95
#> # … with abbreviated variable names ¹sleep_cycle, ²total_rem
6.12 EXERCISE 1.3 indexing by logical statements
A few useful commands: “==”, “!=”, “>”, “<”, “&”, “|”, sum(), which(), table(), ! 1. Create your own logical vector with three TRUEs and three FALSEs
Solution
= c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE)
a ## let's print to screen and make sure it is stored in this variable a
#> [1] TRUE TRUE FALSE FALSE TRUE FALSE
- Produce a vector of the index number of the
TRUE
values
Solution
which(a) ## which gives you the index of TRUE values automatically
#> [1] 1 2 5
which(a == TRUE) ## but sometimes it's reassuring to state exactly what you're doing
#> [1] 1 2 5
- Produce a second vector which indexes the numbers of the falses
Solution
which(!a)
#> [1] 3 4 6
which(a == FALSE)
#> [1] 3 4 6
Go back to the iris dataset, which can be loaded with data(iris) 4. How many irises have sepals less than 5.5 cm?
Solution
data(iris) ## this reloads the data set in case you've closed R since using iris
sum(iris[,'Sepal.Length']<5.5) ## remember TRUE's are 1 and FALSE's are 0
#> [1] 52
length(which(iris[,'Sepal.Length']<5.5)) ## here, which() will only return the index of TRUE values, so we're counting how many there are
#> [1] 52
- Which iris individual has the largest petal length? What is the width of it’s petal?
Solution
max(iris[,'Petal.Length']) ## this gives us the length of the longest petal
#> [1] 6.9
which(iris[,'Petal.Length'] == max(iris[,'Petal.Length'])) ## this gives us the index of the individual with the longest petal
#> [1] 119
'Petal.Width'][which(iris[,'Petal.Length'] == max(iris[,'Petal.Length']))] ## now we're subsetting the Petal.Width column by the index of the individual with the longest petal iris[,
#> [1] 2.3
## another way to do this would be to use the index of the individual with the longest petal to pick rows, and the Petal.Width name to pick columns and subset the entire data frame
which(iris[,'Petal.Length'] == max(iris[,'Petal.Length'])) , 'Petal.Width'] iris[
#> [1] 2.3
- How many of the irises are in this dataset belong to the species versicolor?
Solution
sum(iris[,'Species']=='versicolor')
#> [1] 50
table(iris[,'Species']) ## this gets us all three species
#>
#> setosa versicolor virginica
#> 50 50 50
- How many irises have petals longer than 6cm?
Solution
sum(iris[,'Petal.Length'] > 6)
#> [1] 9
- Create a vector of species name for each iris with sepals longer than 6cm.
Solution
'Species'][iris[,'Sepal.Length']>6] iris[,
#> [1] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> [11] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> [21] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [41] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [51] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [61] virginica
#> Levels: setosa versicolor virginica
'Sepal.Length']>6, 'Species'] ## alternatively, we can put the logical vector in the row part, and Species in the column part, to get a vector back iris[iris[,
#> [1] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> [11] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
#> [21] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [41] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [51] virginica virginica virginica virginica virginica virginica virginica virginica virginica virginica
#> [61] virginica
#> Levels: setosa versicolor virginica
- How many irises have sepals shorter than 5cm, but wider than 3cm?
Solution
sum( iris[,'Sepal.Length'] < 5 & iris[,'Sepal.Width'] > 3 )
#> [1] 13
- How many irises have petals narrower than 0.2cm or shorter than 1.5cm?
Solution
sum( iris[,'Petal.Width'] < 0.2 | iris[,'Petal.Length'] < 1.5 )
#> [1] 26
- What is the average width of setosa iris sepals that are longer than 5cm?
Solution
mean( iris[,'Sepal.Width'][iris[,'Sepal.Length'] > 5][iris[,'Species']=='setosa']) ## convince yourself the second part is a logical vector that subsets iris[,'Sepal.Width']
#> [1] 3.22
mean( iris[iris[,'Sepal.Length'] > 5, 'Sepal.Width'][iris[,'Species']=='setosa']) ## again, we can alternatively subset using logical vectors in the row position
#> [1] 3.22
- What is the difference between the longest and shortest petal lengths of the species virginica?
Solution
max(iris[,'Petal.Length'][iris[,'Species']=='virginica']) - min(iris[,'Petal.Length'][iris[,'Species']=='virginica'])
#> [1] 2.4
- What proportion of flowers in the dataset have petals wider than 1cm?
Solution
sum(iris[,'Petal.Width'] > 1 ) / nrow(iris) ## here, we're counting up how many are wider than 1 cm, and dividing by the total number of flowers to get a proportion
#> [1] 0.62
- Create a new column within your dataframe, called sepalCategory, and set all values equal to ‘long’ Subset short values of this column, and set their values to ‘short’ (Short sepals are those less than 5.5 cm) How many plants with short sepals are there? How many long?
Solution
# new column for long
'sepalCategory'] = 'long' ## this sets ever entry in the column equal to 'long'
iris[,# new column for short (< 5.5 cm)
'sepalCategory'][iris[,'Sepal.Length']<5.5] = 'short' ## this sets only those entries that match our condition to 'short'
iris[,# how many plants with short sepals are there? How many long?
table(iris[,'sepalCategory'])
#>
#> long short
#> 98 52